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ABSTRACT: A mean-field phase diagram for conformationally symmetric diblock melts using the standard 
Gaussian polymer model is presented. Our calculation, which traverses the weak- to strong,segregation 
regimes, is free of traditional approximations. Regions of stability are determined for disordered (DIS) 
melts and for ordered structures including lamellae (L), hexagonally packed cylinders (HI, bcdy-centered 
cubic spheres ( Q m j m ) ,  close-packed spheres (CPS), and the bicontinuous cubic network with Ia3d symmetry 
(QI&. The CPS phase exists in narrow regions along the order-disorder transition for ;cN L 17.67. 
Results suggest that  the Q I ~ ~  phase is not stable above XN - 60. Along the L/QI& phase boundaries, a 
he5agonally perforated lamellar (HPL) phase is found to be nearly stable. Our results for the hicontinuous 
Pn3m cubic (Qp,,gm) phase, known as the OBDD, indicate that  it is an  unstable structure in diblock melts. 
Earlier approximation schemes used to examine mean-field behavior are reviewed, and comliarisons are 
made with our more accurate calculation. 

1. Introduction 
AB block copolymer melts have received considerable 

attention because immiscibility between A and B blocks 
induces self-assembly into various ordered microstruc- 
tures.1>2 In the high-temperature disordered (DIS) 
phase, A and B blocks mix homogeneously, but as the 
temperature is lowered (i.e., the Flory-Huggins 15 pa- 
rameter is increased), they separate on a microscopic 
scale forming A- and B-rich domains separated by an 
extensive amount of internal interface. Various geom- 
etries of these domains occur depending, to a large 
degree, on the spontaneous mean curvature of the 
internal interface, which is produced by a mismatch in 
entropic stretching energy of the A and B b1ocks.l~~ The 
classical structures are lamellae (L), hexagonally packed 
cylinders (HI, and a body-centered cubic (bcc) array of 
spheres (QI,,&. Although early results suggested both 
Q I ~ ~ ~ ~ ~  and close-packed spheres (CPS),5 the latter is no 
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longer accepted as an equilibrium structure. (CPS 
refers to either face-centered cub c (fcc) or hexagonally 
close-packed (hcp).) The first nonclassical phase was 
observed in 19726 and identified in 1986 by Thomas et 
a1.I as a bicontinuous cubic structure (Qpng,) with Pn3m 
symmetry, often referred to as the ordered bicontinuous 
double-diamond (OBDD) phase. Just two years ago, 
there emerged evidence for a sgcond bicontinuous 
structure (Qla&), this time with Ia3d symmetry, some- 
times referred to  as the gyroid p ' i a ~ e . ~ , ~  At about the 
same time, evidence was presented for a stable hexago- 
nally perforated lamellar (HPL) phase, sometimes called 
catenoid lamellar, where each of the thinner minority- 
component lamellae is covered by a hexagonal arrange- 
ment of perforations.10-12 Experiments also suggested 
a hexagonally modulated lamella (HML) phase where 
the perforations are not fully developed,1° but it is 
uncertain whether this is an equilibrium phase. The 
latest development has been a growing skepticism in 
regard to the Qpnsrn phase. Initially, it was realized that 
samples identified as Qpngrn by a characteristic "wagon- 
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puter technology, we demonstrate that most of the 
mean-field phase diagram can be calculated without 
resorting to these additional approximations. In order 
to  put the present calculation into the proper perspec- 
tive, we briefly discuss the development of strategies 
for obtaining approximations to the phase diagram 
before presenting our more accurate diagram. 

In the original work by Helfand and co-workers, two 
additional approximations were devised: a narrow- 
interface approximation (NIA)16 and a unit-cell ap- 
proximation (UCA).17 The NIA was implemented to 
solve the statistical mechanics of a block copolymer in 
the presence of a steplike potential (i.e., an internal 
interface). Although equations for the lamellar phase 
could then be solved, those for doubly- and triply- 
periodic structures were still unmanageable. To cope 
with the more complicated microstructures, the SCFT 
was supplemented with circular and spherical ap- 
proximations for the Wigner-Seitz cells of the H and 
Q I ~ ~ ~  phases, respectively. This produced inaccuracies 
by underestimating the free energies of these phases 
and also made the calculation insensitive to  the equi- 
librium packing arrangement of the cylindrical and 
spherical units. For example, it could not distinguish 
between the Qlmsm and CPS phases. Furthermore, the 
UCA could not straightforwardly be generalized to 
consider more complex phases. More significantly, the 
NIA restricted calculations to the strong-segregation 
regime (i.e., xN >> 10). In 1980, LeiblerzO complimented 
this with a Landau expansion of the SCFT based on the 
random-phase approximation (RPA), providing results 
for the weak-segregation regime (i.e., XN - 10). This 
work also provided a free energy potential which could 
be mapped onto the Brazovskii H a m i l t ~ n i a n , ~ ~  allowing 
for the first calculation that went beyond mean field and 
considered fluctuation effects.21 In 1985, Semenovz2 
introduced a strong-segregation theory (SST) for exam- 
ining the zero-temperature (i.e., infinite ~ l v ,  limit of the 
standard model. Notably, fluctuation effects become 
negligible in this limit, and thus mean field becomes 
exact. Still, Semenov implemented the UCA as well as 
a further approximation to deal with exclusion zones 
that occur in the H and Qlmsm phases, and so his 
calculation did not provide exact zero-temperature 
results. Shortly after, Ohta and Kawasakiz3 presented 
a density-functional theory (DFT) based on the RPA that 
was significant because it could be applied to any degree 
of segregation. It is difficult to assess all the ap- 
proximations in this DFT and others like it,24-26 but a 
comparisonz7 to the exact SCFT result37 for the lamellar 
phase indicated that while DFT gives qualitatively 
correct results, it is quantitatively inaccurate. Likewise, 
comparing the infinite xlv results of the DFT to those 
of the SST supported this conclu~ion.~~ Recently, Vava- 
sour and Whitmorez8 demonstrated that the DFT was 
unnecessary. Using only the UCA, they evaluated the 
mean-field phase diagram from the weak- to the strong- 
segregation regime, bridging the RPA and SST. Be- 
cause their calculation still implemented the UCA, it 
was restricted to the classical phases. 

The first calculation to examine a complex phase24 
applied DFT to the QPnsm phase and found it t o  be 
unstable at strong segregations. In addition to using 
the approximations involved in the Ohta-Kawasaki 
approach, this calculation did not minimize the free 
energy with respect to the shape of the internal inter- 
face, but rather assumed it was a constant mean- 
curvature (CMC) surface. Later, complex phases were 

wheel” TEM image617J3J4 could be in error because th.e 
Q I &  phase produces an analogous image.8i1131z This 
stressed that scattering methods were important in 
order to determine the symmetry of a bicontinuous 
phase, motivating the reexamination of such sample 3. 
Indeed, closer examination of samples originally identi- 
fied as Qpngm showed them to be As of yet, 
compelling evidence using advanced scattering tech- 
niques does not exist for the QPnsm phase. 

In general, the theoretical study of diblock copolymer 
melts has been basedupon a single, standard, Gaussian 
m ~ d e l . ~ J ~ - ~ ~  In this model, each molecule of the melt 
is composed of N segments of which a fraction f forms 
the A block and the rest forms the B block. For 
convenience, A and B segments are usually defined i,o 
have equal volumes. In addition, the “coarse-grainetl” 
segments each represent a sufficient length of polymer 
such that they can be treated as Gaussian where 
internal conformational states of the segments produce 
a Hookian entropic penalty of stretching. The statisticid 
length, a, of a segment is its average RMS end-to-end 
length when no tension is applied and is related to  the 
effective spring constant. Most calculations examine the 
conformationally symmetric case where the A and B 
statistical segment lengths are equal. The model ac- 
counts for hard-core repulsive interactions by imple- 
menting an incompressibility constraint where the 
average segment concentration is forced to  be uniform. 
The remaining interactions are assumed to be local and 
are treated by the enthalpy term, kBTxpO.f$A(r)$B(r) dr, 
where &(r) and $B(r) are the volume fractions of A and 
B segments, respectively, at position r and po is the 
segment density. This simplified model for block CD- 
polymer melts retains the three most important 
ingredients: entropic chain stretching, incompress- 
ibility, and immiscibility between unlike segments. Of 
course, there are possible refinements which we discuss 
below. 

2. Approximations to Mean-Field Theory 

The thermodynamics of even the simplified standard 
model cannot be determined exactly. Treating molec- 
ular correlations in the melt represents a formidable 
problem, and so most calculations resort to  the mean- 
field approximation. The self-consistent field theory 
(SCFT) for this was developed by Helfand and co- 
workers in a series of papers beginning in 1971.16-19 Vile 
note that Scheutjens and Fleer57 developed an analo- 
gous lattice-based SCFT; however, due to the geometric 
constraints associated with a lattice, it is not well suited 
for dealing with the nonlamellar structures exhibited 
by block copolymers. As we discuss later, the mean- 
field approximation works well for high molecuhr 
weight polymers. Equally important is that the fluctua- 
tion corrections to  it are well understood. Still, a t  the 
time of its introduction, the full SCFT represented a 
computationally difficult problem and so numeroils 
additional approximations were implemented. Most of 
the theoretical approaches that followed used the stan- 
dard model, mean-field theory, and differed only in 
regard to the approximations that were added to the 
SCFT. Some of the additional approximations simply 
introduced a degree of inaccuracy, while others re- 
stricted the validity of the calculation to, for example, 
weak or strong segregations. However, by combining 
results from the various approaches, the general kle- 
havior of the standard model has been revealed. Now 
with the development of theoretical methods and coin- 
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examined at weak segregations using the RPA. Because 
the original calculation of Leibler implemented a first- 
harmonic approximation for the segment profiles, it was 
insensitive to the free energy differences between phases 
with the same set of principal scattering vectors. 
Consequently, harmonic corrections had to be added to  
the Leibler theory in order to examine complex phases.59 
Doing so, Olvera de la Cruz, Mayes, and Swiftz9 sug- 
gested that a bicontinuous HPL phase would be stable 
a t  weak segregations. A more recent calculation by 
Hamley and Bates30 showed this phase was, in fact, 
unstable as were numerous other complex phases. 
About the same time, it was demonstrated that the full 
SCFT could be solved for any periodic phase while 
considering a large number of harmonics (i.e., Fourier 
components) and making no assumptions regarding the 
shape of the internal i n t e r f a ~ e . ~ ~  Although this calcula- 
tion found the Qpngn and HPL phases to be unstable, it 
predicted the Qaad phase to be stable for weak to 
intermediate segregations. Because this calculation was 
still limited in the number of Fourier components that 
could be used in representing the segment profiles, it 
could not be extended to the strong-segregation limit. 
Nevertheless, the calculation was able to provide sug- 
gestive results that the Qa& phase may extend to strong 
segregations in a narrow channel of nearly uniform 
width. According to  SST calculations, the HPL,3z 
Qpn3m,33934 and Q I ~ & ~ ~  phases are all unstable in the 
infinite xiV limit. However, these SST calculations all 
ignore exclusion zones and make certain assumptions 
regarding the shape of the internal interfaces, and 
hence, they are not conclusive. Nevertheless, they 
strongly suggest that the Qaa region calculated in ref 
31 terminates a t  finite xN, which would be consistent 
with recent experimental findings.1,60 Earlier experi- 
r n e n t ~ , ~ ~ ~ J ~ J ~  performed with samples prepared by slow 
solvent casting, lead to the conclusion that channels of 
bicontinuous phase separate the H and L phases 
throughout the strong-segregation regime. Although 
this point remains controversial, we believe this reflects 
a metastable state. The rationale is that as a sample 
passes through the weak-segregation regime, the bi- 
continuous phase develops, the sample becomes kineti- 
cally trapped, and then it is unable to  transform to  the 
stable phase at  strong segregations. 

3. Full Mean-Field Theory 
In this section, the standard model using the full 

SCFT is examined without any of the additional ap- 
proximations discussed in the previous section. When 
possible, comparisons are made with those earlier 
calculations to show, for example, when the weak- and 
strong-segregation approximations are valid. We refer 
the reader to ref 31 for the details of how the full SCFT 
calculation is performed. The only difference between 
that calculation and the present one is that here far 
more Fourier terms are used to represent the segment 
profiles. This allows us to produce more accurate 
results and to extend the phase boundaries now unifying 
the weak- and strong-segregation block copolymer theo- 
ries. The most significant prediction of the present 
calculation is that the Qza& regions pinch off as the 
strong-segregation regime is entered. Another notable 
result is that beyond the weak-segregation regime, the 
CPS phase is found to be stable in narrow regions along 
the order-disorder transition. The calculation also 
shows the HPL phase to be nearly stable, suggesting 
that it may actually become stable a t  strong segrega- 
tions. On the other hand, the Q P , ~ ~ ~  phase is found to 
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Figure 1. Convergence of the free energy of the QIa& phase 
per molecule in units of ~ B T  as the number of basis functions 
is increased. The left scale applies t 3 the lower curve for $V 
= 20 and f = 0.33, and the one on the right applies to the 
upper curve for XN = 30 and f = 0.33. 

be rather unstable, in agreement with recent sugges- 
tions that it is not an equilibrium phase in diblock melts. 

Before discussing the results c t  the complete SCFT, 
we provide an intuitive explanatim of how this calcula- 
tion improves on earlier ones. The key to examining 
complex periodic phases centers around a basis function 
expansion of all spatially deperdent quantities. For 
instance, the A-segment volume fraction is expanded as 

The self-consistent field equation:; are then transformed 
to Fourier space, and instead of solving the equations 
directly for +A(r) as in ref 28, the! set of coefficients + ~ , i  
is solved for. The basis functions are selected such that 
they possess the symmetry of the phase being consid- 
ered. For the Qza& phase,61 the first few are 

fib) = 1 (2) 

fi(r) = &E(cos(x) sin(Y) s i n ( 2 ~ )  + 
cos(Y) sin(2) sin(2X) + cos(2) sin(X) sin(2Y)) (3) 

f3(r) = d Z E ( c o s ( 2 ~ )  c o s ( 2 ~ )  + C : O S ( ~ Y )  c o s ( 2 ~ )  + 
cos(2Z) COS(2X)) (4) 

f4(r) = dZE(sin(2~)[cos(3~)  sin(z) - 
sin(3Y) cos(Z)I + sin(2Y)[c:os(3Z) sin(X) - 
sin(3.Z) cos(X)] + sin(2Z)[cos(3X) sin(Y) - 

sin(3X) cos(Y)I) ( 5 )  

f5(r) = d%%cos(4X) + co!;(4Y) + cos(4Z)) ( 6 )  

where X = 2nxID is a dimensionless length, Y and Z 
are defined similarly, and D is the size of the cubic unit 
cell. The basis functions are odered according to the 
magnitudes of their wavevectcrs. This sequence of 
functions is infinite and must be truncated in order to 
perform a numerical calculation. The more basis func- 
tions retained, the more accurate the calculation. Fig- 
ure 1 shows F z a g d ,  the free energy of the QIaad phase per 
molecule measured in units of k:3T, as a function of the 
number of basis functions for X N  = 20 and 30 at f = 
0.33. This figure demonstrates the need for more basis 
functions as the segregation increases, causing the 
width of the internal interface to become narrow relative 
to D .  Locating a phase boundary at a given value of 
xN to an accuracy in f of &lop3 requires typically an 
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Figure 2. A-segment profiles over one period of the lamellar 
phase of a symmetric Cf = 0.5) diblock melt for xlv = 11, 12, 
15, 25, 50, and 100. Dashed lines denote first-harmonic 
approximations for the profiles at xN = 11, 12, and 15. 

accuracy of in the free energies. We use a 
generous number of basis functions in order to be 
confident that we have attained convergence. For the 
Qla$d phase, 175, 325, and 450 functions are used for 
XN = 20, 30, and 40, respectively. For comparison, the 
first-harmonic approximation used in the RPA calcula- 
tion of Leibler retains just the first two basis functions, 
i.e., fl(r) and f 2 ( r ) ,  for each phase. Furthermore, that 
calculation performs a power-series he., Landau) ex- 
pansion of the free energy potential in &4,2 which i!; 
truncated after the fourth-order term. In the othe:!. 
extreme, the SST assumes &(r) is a step function with 
values of either 0 or 1. It further assumes that 
copolymers are strongly stretched following straight 
paths, whereas the SCFT calculates distributions ove!: 
all paths weighting them by the appropriate Boltzmanri 
factors. 

The product xiV is the quantity that controls the 
degree of segregation between A and B blocks. Typi- 
cally, segregation is categorized into three regimes: 
weak, intermediate, and strong. Because there are no 
well-defined criteria for separating these regimes, they 
are usually discussed in vague terms. Here, we present 
some results to better indicate over what intervals of 
xiV these regions occur. As a representative example, 
we examine the lamellar phase of a symmetric (f= 0.5) 
diblock and plot the profile for the A-segment density 
+A(r) at  several degrees of segregation in Figure 2. The 
weak-segregation regime occurs when the profile is 
sinusoidal or, in general, when the profile is well 
approximated by its first Fourier component. The 
dashed lines in Figure 2 show the first-harmonic ap- 
proximation for the weaker segregated cases. Based or1 
that, the weak to intermediate crossover occurs a t  xAT - 12, not much above the mean-field critical point ai; 
xN = 10.495. Consequently, the RPA is only accurate 
in a narrow xN range as was demonstrated earlier in 
ref 28. The strong-segregation regime occurs when the 
middle of each domain becomes essentially pure. It it; 
rather arbitrary as to what is meant by pure, bui; 
requiring @A(r) > 0.9999 in the middle of an A-rich 
domain provides a crossover from intermediate to strong 
segregation at xlV - 50. The SST not only requires the 
A and B blocks to be strongly segregated, it also requires; 
them to be strongly stretched and the internal interfaces; 
to be narrow. As illustrated below, the SST does not 
become accurate for predicting domain spacings and 

10 40 100 400 
XN 

Figure 3. Period (a) and interfacial width (b) of the lamellar 
phase for a symmetric (f= 0.5) diblock melt plotted logarith- 
mically as a function of xiV. Solid lines are obtained from 
SCFT, dashed lines denote the SST predictions given by eqs 7 
and 8, and the dotted line in (b) represents w = 2 a / ( 6 ~ ) ~ ~ .  

interfacial widths until xiV - 100. In general, far larger 
degrees of segregation are required before the SST 
becomes reliable.35 

Many interpret the segregation regimes on the basis 
of how the lamellar spacing, D, and the interfacial 
width, w, vary with N. Following a typical definition, 
we equate w to (d$A/dz>-l evaluated at the interface. In 
Figure 3, these quantities are plotted logarithmically 
for both the SCFT and SST. In the DIS phase at f = 
0.5, the characteristic length scale is 2dq* = 1 . 3 1 w 2 ,  
where q* is the wavevector at which the structure 
function attains its maximum.20 This iVu2 scaling 
should be associated with the absence of ~egregation.~7 
Often it is assumed that this scaling continues into the 
weak-segregation regime. This confusion has been 
amplified by misleading DFC  calculation^,^^^^^ which 
predicted a Nu2 scaling for weakly ordered microstruc- 
tures. This result has been attributed to neglecting the 
wavevector dependence in the high-order vertex func- 
tions of the RPA expansion.27 The more accurate SCFT 
c a l c ~ l a t i o n s ~ ~ ~ ~ ~  like the one presented here show that 
the exponent jumps immediately as the weak-segrega- 
tion regime is entered, which occurs upon crossing the 
critical point. We find that the exponent jumps to 0.994, 
consistent with the RPA calculation in ref 36 and 
intermediate to the exponents quoted in refs 37 and 38. 
When fluctuations are taken into account, segregation 
begins in the DIS phase causing the exponent to  
increase prior to the order-disorder transition39@ 
consistent with e ~ p e r i m e n t . ~ ~  Fitting the weak to  
intermediate regimes,  experiment^^^,^^ measure an 
exponent of m4/5. At the strong segregations, D begins 
to scale with an exponent of 2/3 consistent with experi- 
ment13v65 and with the SST r e s ~ l t ~ ~ l ~ ~  

(7) 

shown with a dashed line in Figure 3. We note that 
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Table 1. Coordinates along the Blmndaries of the Qrae  
Phase" 

DIS 

0 0.2 0.4 0.6 0.8 1 
0 ' " I ' ' ~ I . ' l ' * l l ' l ' '  

f 
Figure 4. Mean-field phase diagram for conformationally 
symmetric diblock melts. Phase are labeled-L (lamellar), H 
(hexagonal cylinders), QrQ& (bicontinuous Zu3d cubic), QI,~, 
(bcc spheres), CPS (close-packed spheres), and DIS (disor- 
dered). Dashed lines denote extrapolated phase boundaries, 
and the dot denotes the mean-field critical point. 

. _  
0.1 0.2 0.3 0.4 0.5 

f 
Figure 5. Expanded view of the phase diagram in Figure 4, 
showing the weak-segregation regime. The DIS + CPS + 
Qrmsm and H + Q ~ , , g d  + L triple points are denoted with dots. 

while DFT calculations also obtain this 'V3 scaling, they 
inaccurately predict the proportionality 
At strong segregations, the interfacial width becomes 
independent of N and approaches w = 2a/(6xIu2. Be- 
cause this approximation never becomes accurate for 
reasonable  segregation^,^^ Semenov40 was stimulated to 
derive an improved SST-based expression 

which provides an accurate estimation of w by xN - 100. 
We note that refs 40 and 41 illustrated that fluctuations 
have a significant effect on w and that they need to be 
accounted for when comparing theory to experiment. 

Figure 4 presents the SCFT phase diagram for xN up 
to 120. In agreement with a prediction by S e m e n o ~ , ~ ~  
there are narrow regions of stability along the order- 
disorder transition for the CPS phase, extending toward 
the strong-segregation limit from DIS + CPS + &Imam 
triple points at xN = 17.67 and f = 1 - f = 0.235 (see 
Figure 5). We note that while the regions of stability 
for the classical ordered phases L, H, and Qmsm grow 
with increasing xN, the region of stability for the 
bicontinuous Qza& phase decreases monotonically be- 
yond xN - 18 where its width is Af = 0.037. Initially, 
it narrows gradually, but this becomes more rapid as 
xN increases. Table 1 lists coordinates for the Qzaa 
phase boundaries, which originate from triple points at 

lcN fWQ 

40 0.318 
35 0.318 
30 0.320 
26 0.324 
24 0.327 
22 0.332 
20 0.338 
18 0.346 
16 0.359 
14 0.380 
12 0.419 

4 *Hlq * Q 

1.028 
1.026 
1.023 
1.021 
1.020 
1.018 
1.016 
1.015 
1.013 
1.011 

fQ5 

0.337 
0.343 
0.349 
0.356 
0.361 
0.367 
0.375 
0.384 
0.396 
0.411 
0.434 

q*Qfq*L 

1.033 
1.030 
1.025 
1.022 
1.018 
1.015 
1.009 
1.001 
0.995 
0.990 

Af 
0.019 
0.025 
0.029 
0.032 
0.034 
0.036 
0.037 
0.037 
0.036 
0.031 
0.015 

0.0388 
0.0345 
0.0299 
0.0272 
0.0245 
0.0213 
0.0179 
0.0141 
0.0097 
0.0060 

~ H P L  

0.0084 
0.0076 
0.0069 
0.0065 
0.0059 
0.0050 
0.0040 
0.0030 
0.0019 
0.0007 

a Also listed are the ratios of q*, the magnitude of the principal 
scattering vector, for the two equilibrium phases along each 
transition. (The subscript Q denotes &,ad.) The last two columns 
list the excess free energy per molecule in units of ~ B T  for the 
Qpnsm and HPL phases along the WQrajd and QIasda transitions, 
respectively. 

xN = 11.14 and f = 1 - f = 0.452 (see Figure 5 ) .  The 
fourth column demonstrates the narrowing of the Qla$jd 
channel, suggestive of an impending H + Qza& + L 
triple point beyond which the Qa& phase would be 
unstable. At XN = 40, where the width is only Af = 
0.019,450 basis functions are used to evaluate the free 
energy of the QIaSd phase. Although the large number 
of basis functions becomes prohibitive, we are prevented 
from extending these transitions further due to conver- 
gence problems in solving the selkonsistent field equa- 
tions. We attribute this problem. to the Fourier series 
representation of the segment profiles, because small 
displacements in a sharp interface can produce drastic 
changes in large wavevector Fourier components. This 
seems to be particularly problematic for the Qza& phase. 
Still, the width of the Qla$d regicln must vary continu- 
ously and thus become even narrower beyond xN = 40, 
almost certainly pinching off. If this was not to  happen, 
it would require the trends that have slowly and 
monotonically developed to make an unprecedented and 
unphysical reversal. Although we cannot absolutely say 
the Qza& phase pinches off, it seems highly likely that 
it does, and the SST calculation3:l supports this conclu- 
sion. We note that, at weak segregations, both the CPS 
and the QIagd phase pinch off prior to the mean-field 
critical point as illustrated in Figure 5, because their 
principal scattering vectors do not form an octahe- 
dron.20fj6 

For the classical phases, calculations can be extended 
into the strong-segregation regime. In Figure 4, ex- 
trapolations are made for the Qlaa phase boundaries, 
which have them terminating ax xN - 60. Then, the 
remaining transitions are calculated up to XN = 120. 
Coordinates along the transiticins between classical 
phases are listed in Table 2. As xN diverges, the DIS/ 
CPS and CPS/QI,~, transitions will continue to ap- 
proach f = 0 and 1. The infinite X N  limit of the Qmgm/H 
and H/L transitions can in principle be determined with 
the SST. Implementing the unit-cell approximation and 
ignoring the effect of exclusion zones, SST predicts the 
limits to be f = 1 - f =  0.117 and 0.299, r e ~ p e c t i v e l y . ~ ~ ~ ~ ~  
Proper treatments of the exclusion zones44 demonstrate 
that they can be safely i g n o r ~ ! d , ~ ~ , ~ ~  and the error 
associated with the unit-cell approximation has been 
estimated for the L/H transition. F r e d r i ~ k s o n ~ ~  found 
that the UCA causes a -4% shift, suggesting the correct 
LJH limit is at; 0.287, while Liklitman and S e m e n ~ v ~ ~  
predicted it a t  0.293. However, SCFT results extrapo- 
lated to xN = 00 provide compelling evidence that the 
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Table 3. Scattering Amplitudes for the Phase at 
Various Coordinates, kN,  f lu 

Table 2. Coordinates along the Boundaries between the 
Classical Phases" 

q * d  4*d 4*d 4*$ 
XN fDlC 4*C fClQ 4"Q f a / H  4*H fwL 9*L 
120 0.047 0.049 0.971 0.123 1.086 0.317 1.08!5 
100 0.055 0.057 0.971 0.126 1.084 0.318 1.083 
80 0.066 1.549 0.068 0.971 0.131 1.078 0.320 1.0811 
60 0.083 1.387 0.086 0.971 0.142 1.068 0.324 1.076 
50 0.097 1.315 0.101 0.971 0.151 1.060 0.326 1.079 
40 0.116 1.238 0.121 0.971 0.166 1.049 0.331 1.0613 
30 0.148 1.163 0.153 0.970 0.192 1.033 0.340 1.0513 
20 0.210 1.095 0.212 0.968 0.243 1.012 0.363 1.03!5 

" A l s o  provided are the ratios of q*, the magnitudes of the 
principal scattering vectors. (The subscripts D, C, and Q denote 
DIS, CPS, and Qmsm, respectively.) 

true L/H limit is 0.310,46 implying a significant and, as 
of yet, unidentified error in the SST. We note that DFrr 
calculations are rather inaccurate, predicting 0.215 and 
0.355 in ref 23 and 0.195 and 0.345 in ref 25 for the 
two infinite XN limits. 

In addition to those phases found to be stable, we have 
examined the bicontinuous cubic phase with Pn3nt 
symmetry and the hexagonally perforated lamellar 
phase up to xN = 35. Notably, both are predicted to be 
stable a t  certain compositions in diblockhomopolymer 
blends.47 Here, we find that the Qpngm phase is rather 
unstable but that the HPL phase is nearly stable. Thte 
Qpnsm phase is least unstable along the WQza& transj- 
tion. In the seventh column of Table 1, its excess free 
energy A8'pngm per molecule in units of kBT is given for 
various values of XN along this transition. This energy 
increases monotonically with xN, and considering the 
two SST  calculation^,^^^^^ the Qpngm phase likely remains 
unstable as xN diverges. Along the I.&za$d transition., 
we find the excess free energy of the HPL phase, AFHPI., 
to be quite small. Column eight in Table 1 shows that 
its excess free energy increases slowly with xN, SUE- 
gesting that the HPL remains unstable into the strong- 
segregation limit in agreement with the SST calculation 
in ref 32. However, the possible stability of this phase 
should not be dismissed even in the infinite XN limit. 
The SST calculation assumed the perforations were 
aligned between adjacent minority-component layers. 
Both theoretical3I and e ~ p e r i m e n t a l l ~ ~ l l ~ ~ ~  results sug- 
gest that it is more favorable to  have the perforations 
staggered, and so the SST calculation probably overes 
timated its free energy. We note that preliminary work 
has indicated that introduction of conformational a s p . -  
metry may be sufficient to bring about the stability of 
the HPL phase at degrees of segregation accessible t o  
our calculation. Because structures considered in the 
SCFT calculation have to be specified a priori, it is 
conceivable that other phases unknown to us could be 
stable. If this is so, we will likely learn of them through 
future experiments. 

Neither the HPL or the CPS phase has a uniquelg 
defined morphology. For the HPL phase, we examined 
the two geometries where the perforated minority- 
component layers are staggered in abab ... and abcabc ... 
sequences, and for the CPS phase, we examined both 
hcp and fcc structures. Not surprisingly, we find that 
both HPL structures provide the same spacings between 
lamellae and between perforations within the layerr;. 
Likewise, both CPS structures produce spacings be- 
tween nearest-neighbor spheres that are indistinguish- 
able. At strong segregations, we find the different 
packing arrangements in each case to  be essential1,y 
degenerate in free energy. Because the basis function 

peak (15,0.33) (20,0.33) (30,0.33) (20,0.30) (20,0.36) 

1.0000 
0.0919 
0.0004 
0.0020 
0.0081 
0.0058 
0.0021 
0.0011 
0.0010 
0.0006 

1.0000 
0.1150 
0.0003 
0.0003 
0.0057 
0.0034 
0.0022 
0.0017 
0.0019 
0.0012 

1.0000 
0.1274 
0.0010 
0.0002 
0.0052 
0.0032 
0.0029 
0.0026 
0.0024 
0.0019 

1.0000 
0.1024 
0.0002 
0.0026 
0.0145 
0.0113 
0.0046 
0.0029 
0.0022 
0.0013 

1.0000 
0.1286 
0.0015 
0.0002 
0.0009 
0.0002 
0.0006 
0.0007 
0.0014 
0.0009 

a Peaks are identified with the standard spectroscopic (hk l )  
notation,6l and amplitudes are normalized to  the principal (211) 
peak. 

expansion converges more rapidly for the abcabc ... 
stacking of perforated lamellae and for the fcc arrange- 
ment of spheres, those are the structures we use for 
most of our calculations involving the HPL and CPS 
phases, respectively. At weaker segregations, however, 
noticeable differences do exist, with the HPL phase 
slightly favoring the abab ... sequence and the CPS phase 
favoring the hcp arrangement. Consequently, the hcp 
lattice must be used in order to accurately obtain the 
DIS + CPS + Qzmsm triple points. Nevertheless, we 
expect that, in real melts, the slight differences in 
energies will be irrelevant in comparison to nonequi- 
librium effects and that the arrangement of either 
perforated lamellae or close-packed spheres will be 
random. 

This paper has focused on equilibrium phase behav- 
ior, and to do so, all that was required was the free 
energy of each structure. The SCFT also predicts 
numerous other quantities, many of which can be tested 
against experiment. For example, the Fourier series 
representation of the segment profile, @A(r), straight- 
forwardly yields scattering  amplitude^.^ For the Q z d d  
phase at xN = 20 and f = 0.33, the Fourier coefficients 
@ ~ , j  for i = 1,2,3, ... are 0.3300,0.3164, -0.1074,0.0050, 
-0.0057, .... The scattering amplitudes in Table 3 are 
obtained by squaring these coefficients. Notably, the 
theory predicts the (220) peak to be -10% of the 
principal (211) peak in agreement with experiment.*J5 
Furthermore, the amplitudes for (321) and (400), the 
third and fourth reflections, respectively, are often 
abnormally small, consistent with measurements in refs 
8, 11, and 15. Also provided by the theory are the 
magnitudes of the principal scattering vectors q*.68 
Tables 1 and 2 provide the ratio of these magnitudes 
for the two equilibrium phases along each transition. 
For the DIS phase, q* is taken to be the wavevector for 
which the structure function attains its maximum. For 
the CPS phase, we evaluate q* using the fcc lattice; 
using the hcp lattice with the same spacing between 
spheres would reduce it by a factor of 81t213. At strong 
segregations, q* can exhibit discontinuities of several 
percent across order-order phase boundaries and much 
larger discontinuities across the order-disorder transi- 
tion. At weak segregations, the discontinuities in q* 
tend to become vanishingly small. Notably, the epi- 
taxial growth of the phasesJ1 and of the QImijm 
phase6s from the H phase both imply small discontinui- 
ties in q* consistent with the SCFT predictions. Ad- 
ditional information provided by the SCFT includes all 
the segment distribution f ~ n c t i o n s . ~ ~  For instance, the 
distribution of the ends or the junctions of the diblocks 
can be determined. From the A-segment profile, the 
width of the interfaces can be calculated as can the 
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detailed shape of the interface. Furthermore, the 
energy contributions due to the entropic stretching of 
the A and B blocks and due to the tension of the internal 
interface can be evaluated. We are currently pursuing 
such calculations, with the hope they will yield an 
explanation for what stabilizes the Q I ~ ~  phase. 

4. Discussion 
Theory has now reached the stage where the mean- 

field phase diagram of the standard model is well-known 
for what is considered the most fundamental block 
copolymer system, the conformationally symmetric 
diblock melt. Several challenges remain, such as pro- 
viding more conclusive evidence that the (&& region 
closes off and accurately determining the resulting triple 
point. As we have discussed, pushing the present 
calculation to sufficient segregation will be rather 
difficult. Conceivably, it is possible to improve on the 
SST calculations making fewer assumptions regarding 
the shape of the internal interfaces and adding finite- 
segregation corrections. Although this may provide 
more convincing evidence that the Q I ~ ~  is unstable at 
strong segregations, it is unlikely to accurately locate 
the triple point if it is indeed close to XN - 60. Of 
course, one issue this type of theory can never resolve 
is whether all the stable structures have been consid- 
ered. This is where theory and experiment should be 
used in conjunction with each other. Experiments may 
detect stable or metastable states and provide clues t o  
their structure. With that it may be possible to narrow 
the field of candidates and determine a new stable 
phase. 

In the study of the standard model, perhaps the last 
task in regard to bulk phase behavior is to include 
fluctuation effects into the full SCFT. The extent to 
which fluctuations affect phase behavior increases as 
the invariant polymerization index, N Npia', is 
decreased. Weakly segregated microstructures are most 
susceptible to fluctuations, which can destroy long-range 
order transforming them into the disordered state. To 
date, fluctuation corrections have been incorporated into 
both the RPA21,39,48 and the DFT.49 The RPA-based 
calculations examine the vicinity of the mean-field 
critical point (see Figures 4 and 5) where fluctuations 
are greatest. They illustrate that fluctuations prevent 
the critical point from occurring and shift the order- 
disorder transiti_on (ODT) to larger XN by an amount 
proportional t o  Np1l3. They also open up windows of 
first-order transitions between the DIS phase and the 
various ordered structures. In the infinite molecular 
weight limit, fluctuations are completely suppressed and 
the mean-field behavior is recovered. The DFT calcula- 
tion shows that fluctuation effects diminish rapidly as 
the ordered structures become segregated. Calculations 
have yet to determine whether fluctuations alter the 
delicate free energy balance in the complex phase 
region. Experiments suggest that at weak to intermedi- 
ate segregations, they can produce significant changes 
to the order-order phase transiti0ns.l 

Although the present theoretical result agrees with 
experiment in that the Q I ~ Q  phase exists as a 
bubble,lJ1J2 there are some discrepancies in regard to 
the complex phases. Experiments indicate that, as 
molecular weight increases, the phase becomes 
unstable and the only complex phase that appears 
stable is the HPL 0ne.l This discrepancy cannot be 
attributed to  thg mean-field approximation, because 
these are large N results for which fluctuation effects 
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are diminished. Although these discrepancies could be 
a result of nonequilibrium effects in the experiments, 
it could just as well be due to  limitations in the standard 
model. While this model has proven itself to be rather 
successful in most regards, the isiwe of stability among 
complex phases is a subtle one that may require a more 
refined approach. 

Theoretical research has been 'lased on the underly- 
ing assumption that block copolyiner phase behavior is 
reasonably universal and that all AB diblock systems 
have phase-diagrams that are to~~ologically equivalent 
to that of the standard model. Considering the close 
competition of the complex phases in the region between 
the L and H phases, this is unlikely. Presumably, 
refinements to the model will alter the subtle balance 
of energies between the complex phases. Although 
consideration of conformational asymmetry between the 
A and B b l o ~ k s ~ ~ ~ ~ ~  has not yet produced qualitatively 
different b e h a ~ i o r , ~  some of our calculations have 
indicated that high asymmetries may cause the HPL 
phase to become stable. It is possible that polydispersity 
could alter the phase diagram. Even though this has 
been incorporated into the RPA,ei2 there is little infor- 
mation regarding its effect on the phase boundaries. 
However, SCFT calculations illustrate that binary 
blends of closely matched diblocks behave like a mono- 
disperse diblock melt with com~~ositionally averaged 
 parameter^,^^ strongly suggesting that a moderate 
polydispersity will have little effect on phase behavior. 
Another issue worthy of consideration is the relaxation 
of the incompressibility constraint. Several w o r k ~ l ~ , ~ ~  
have illustrated how compressibi1:ity effects can be dealt 
with, and recently it was demonstrated that such 
equation-of-state effects can produce a temperature 
dependence of x that results in a lower critical point.55 
Nevertheless, our preliminary results suggest that 
compressibility effects have little influence on the phase 
diagram when plotted in the XN - fplane. It may be 
important to more accurately t:reat the interactions 
between A and B segments. For polymer blends, the 
enthalpy of mixing A and B homopolymers is assumed 
to be X@A@B. The fact that the actual enthalpy does not 
fit this simple form results in ii x parameter which 
depends on @A. In block copolymer melts where @A is 
not a simple scalar but rather E .  spatially dependent 
quantity such a treatment is unsatisfactory. The solu- 
tion is to examine more genera:. interaction terms.lg 
Another issue is the effect of interactions with a finite 
range. Helfand et aZ.ls have illustrated how this can 
be incorporated into the theory. Still, another concern 
is the effect of finite persistence lengths. The wormlike 
mode170 offers a way in which thils can be included into 
the present calc~lat ion.~~ With the study of refinements 
like those discussed here, our understanding of what 
favors the occurrence of complex phases will no doubt 
become more complete. 
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